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1 Introduction
KiSSAM stands for Kintech Simulation Software for Additive Manufacturing. As its name
clearly suggests, KiSSAM is a multiphysics simulation software tool designed primarily for high-
performance and high-fidelity modeling of metal powder bed fusion (PBF) additive manufactur-
ing processes at the mesoscale level. The current version of KiSSAM supports simulations of
both direct metal laser melting (DMLM) and electron beam melting (EBM) varieties of PBF.

At the core of KiSSAM lies a powerful hydrodynamic solver for weakly compressible fluids
based on the Thermal Lattice Boltzmann Method (TLBM) with Volume of Fluid (VoF) free
surface tracking. This solver is used to simulate melt pool dynamics during the PBF process.
In order to facilitate the high-fidelity modeling of the PBF, the following physical processes are
also modeled in KiSSAM:

• heat transfer,

• melting and solidification phase transitions,

• surface wetting,

• Marangoni convection,

• recoil pressure of evaporating metal,

• evaporation and radiative cooling of melt,

• propagation and absorption of laser beam in both the powder bed and curved melt surface
accounting for the multiple reflections of the beam,

• propagation and absorption of electron beam in both the powder bed and curved melt
surface accounting for the electron reflection at the material surface.

The software code is written in CUDA C++ and is designed for high-performance computing
at workstations equipped with Nvidia General Purpose Graphics Processing Units (GPGPU).

Detailed description of the underlying physical models and equations can be found in [].

2 Hardware and Software System Reqirements
KiSSAM requires a workstation with Linux OS and at least one NVidia GPU. Minimal hardware
requirements are:

• x86 CPU (Intel i5 processor or AMR Ryzen 5 desktop or server);

• NVidia GPU Pascal or newer architecture with more than 8 GB GPU memory;

• RAM 32 GB RAM.

Software requirements:

• Ubuntu 18.04+

• X server

• NVidia latest driver

• NVidia Cuda toolkit ver. 11 (preferable)
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• python 3.6

• numpy

• python pillow

• GLut library (libglut 3 or freeglut3 package);

• VirtualGL (recommended);

• OpenVDB library (recommended).

RECOMMENDED THIRD PARTY SOFTWARE:

• A text editor or JSON editor for configuration.

• vdb_view or Blender for viewing output geometry.

• Preferred data analysis software: MS Excel, Matlab, etc.

3 Description of physics and modelling approaches

3.1 Simulation domain and grids
KiSSAM has a cuboidal simulation domain. There are 3 types of grid: Meltpool Grid ,
Global Geometry Grid, Tractile Mesh.

Meltpool Grid is a smallest grid which covers the meltpool region only. This grid is rectan-
gular and contains of cubic cells with ∆r ×∆r ×∆r size each. The grid is adaptive and follows
the liquid melt pool. The melt pool is always enclosed by the Meltpool Grid.
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X
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Figure 1: Types of grids used in KiSSAM
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3.2 Underlying physical models
3.2.1 Hydrodynamic model

For simulation of the liquid meltpool the weakly compressible solver based on Thermal Lattice
Boltzmann Method (TLBM) with Volume of Fluid (VoF) free surface tracking is used. The model
includes several important extensions to the standard LBM: free surface tracking with tension,
wetting and other acting forces; heat transfer; and melting and solidification phase transitions.

In the simulation, the computational domain (Meltpool Grid) is divided into equal cubic
cells with ∆x = ∆y = ∆z = ∆r. Each cell has a type that defines its phase: Solid, Fluid, or
Void. Some Fluid cells can be also Interface sub-type. Interface cells separates Fluid and Void
cells assure them not to be adjacent.

In each Fluid cell, the lattice Boltzmann equation (LBE) is solved for a discrete set of distri-
bution functions (DFs) fi. We use the LBM with the D3Q27 model and single-relaxation time
BGK scheme [11]:

fi(x⃗+ c⃗i∆t, t+∆t) = fi(x⃗, t)−
fi(x⃗, t)− feqi (ρ, u⃗)

τf
+ Fi, (1)

where c⃗i = {l,m, n}, l,m, n ∈ 0,±1, i = 0, ..., 26 are discrete velocity vectors corresponding to
discrete DF values fi, Fi is the force term. The equilibrium distribution is taken as the basic
polynomial form

f⃗eqi (ρ, u⃗) = wiρ

(
1 +

c⃗iu⃗

c2s
+

1

2

(c⃗iu⃗)
2

c4s
−

1

2

u⃗2

c2s

)
, (2)

where ρ(x⃗, t) =
∑
i

fi and ρ(x⃗, t)u⃗(x⃗, t) =
∑
i

c⃗ifi represent the local fluid density and velocity, wi

are the constant weights defined in the LBM, c2s = c2/3, with c = ∆x/∆t is the lattice step, and

the fluid viscosity is µ =
τf − 1/2

3
, which gives the unit conversion system.

The basic LBM algorithm consists of two simple steps, corresponding to the first and second
terms in (1). The streaming step copies each DF fi from one cell to its neighbor in the c⃗i
direction. The collision step locally computes the macro variables and updates fi.

For heat transfer and energy distribution in Meltpool Grid in Solid and Fluid cells the
double distribution function (DDF) approach is implemented, where one more set of 27 LBEs is
solved:

hi(x⃗+ c⃗i∆t, t+∆t) = hi(x⃗, t)−
hi(x⃗, t)− heqi (ρ, u⃗)

τh
+Qi, (3)

where Qi is the source term and the equilibrium distribution is

h⃗eqi = wiE

(
1 +

c⃗iu⃗

c2s
+

1

2

(c⃗iu⃗)
2

c4s
−

1

2

u⃗2

c2s

)
,

Here, E =
∑
i

hi = E(x⃗, t) is the local energy density. The thermal diffusivity is k =
τh − 1/2

3
.

The energy (or enthalpy) E is strictly associated with temperature T as:

E(T ) =


Esolid(T ) if T ≤ Tsolidus;

Esolidus + L
T − Tsolidus

Tliquidus − Tsolidus
if Tsolidus < T ≤ Tliquidus;

Esolidus + L+ Eliquid(T ) if T > Tliquidus.

(4)
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Here Esolid(T ) and Eliquid(T ) are temperature-dependent piecewise linear enthalpy approxi-
mation in solid and in liquid phases, L is latent heat of melting, Tsolidus and Tliquidus are solidus
and liquidus temperatures, Esolidus = Esolid(Tsolidus) is enthalpy at solidus point.

The source term Qi is either volumetric heat source (for electron beam) or surface energy
normal gradient (for laser beam). Volumetric heat source has the following form: Qi=wiEsource,
where Esource is the source volumetric energy density. The surface energy normal gradient is
calculated similarly to [1]:

Qi = wi

(
2

c2s

(
c⃗i, Q⃗

)
+

4

c4s
(c⃗i, u⃗)

(
c⃗aver, Q⃗

))
if (c⃗i − u⃗, n⃗) ≤ 0,

where c⃗aver =
∑

(c⃗i−u⃗,n⃗)≤0

wic⃗i, Q⃗ = −n⃗Esource and n⃗ is a normal at the surface directed from

fluid or solid.

Cell types change algorithm
The free surface is simulated with the VoF method, where the filled fraction of every cell is
tracked. This approach allows us to consistently describe the sharp change of density across the
fluid surface boundary.

Each cell of Meltpool Grid stores the cell filling fraction φ value (0 ⩽ φ ⩽ 1). In Void
cells φ = 0, in Fluid cells not of the Interface sub-type φ = 1, in Solid and Interface cells φ ranges
from 0 to 1. Additionally the intermediate value ∆m (cell mass change) is tracked in every cell
of the Meltpool Grid.

The step Volume of Fluid step consists of 4 sub-steps:

1. Calculate ∆m only in the Interface cells. This is performed in according with the following
equation:

∆m =

Q∑
i

Fi +∆mevap;

Fi = F
{n}
i + kadF

{ad}
i .

(5)

F
{n}
i (x⃗) =


−fi(x⃗+ c⃗i) + fir (x⃗) if (x⃗+ c⃗i) is Fluid cell ;
(φ(x⃗) + φ(x⃗+ c⃗i))

2
(−fi(x⃗+ c⃗i) + fir (x⃗)) if (x⃗+ c⃗i) is Interface cell ;

0 if (x⃗+ c⃗i) is Void or Solid cell .
(6)

Here ∆m{ev} denotes mass loss during evaporation, which is evaluated from the evaporation
solver, see sec. 3.2.6. And i

r stands for the inverse direction (c⃗ir = −c⃗i). The term F
{ad}
i

designates as anti-diffusion correction, which is necessary to make the surface sharper. The
constant coefficient kad regularizes the anti-diffusion magnitude (default 0.1).

The F {ad}
i is evaluated from the following table [10]:
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cell x⃗ type
(sub-type)

cell (x⃗+ c⃗i) type
(sub-type) (c⃗i · n⃗aver) F

{ad}
i

Interface
(sub-type F)

Interface
(sub-type I) > 0 +

(c⃗i · n⃗aver)
|⃗ci||n⃗aver|

φ(x⃗+ c⃗i)fir (x⃗)

Interface
(sub-type V)

Interface
(sub-type I) < 0 +

(c⃗i · n⃗aver)
|⃗ci||n⃗aver|

(1− φ(x⃗+ c⃗i)) fi(x⃗+ c⃗i)

Interface
(sub-type I)

Interface
(sub-type F) < 0 +

(c⃗i · n⃗aver)
|⃗ci||n⃗aver|

φ(x⃗)fi(x⃗+ c⃗i)

Interface
(sub-type F)

Interface
(sub-type F of V) < 0 −φ(x⃗)fi(x⃗+ c⃗i)

Interface
(sub-type F)

Interface
(sub-type F) > 0 +φ(x⃗+ c⃗i)fir (x⃗)

Interface
(sub-type F)

Interface
(sub-type V) > 0 + (1− φ(x⃗)) fir (x⃗)

Interface
(sub-type V)

Interface
(sub-type F or V) < 0 − (1− φ(x⃗+ c⃗i)) fi(x⃗+ c⃗i)

Interface
(sub-type V)

Interface
(sub-type F) > 0 +φ(x⃗+ c⃗i)fir (x⃗)

Interface
(sub-type V)

Interface
(sub-type V) > 0 + (1− φ(x⃗)) fir (x⃗)

Interface
(sub-type I)

Interface
(sub-type V) > 0 +

(c⃗i · n⃗aver)
|⃗ci||n⃗aver|

(1− φ(x⃗)) fir (x⃗)

Otherwise 0

Here n⃗aver =
1

2
(n⃗(x⃗) + n⃗(x⃗+ c⃗i)), where n⃗ is a surface normal directed from fluid, evalu-

ated from curvature calculation algorithm (see sec. 3.2.3).

Interface cell has three sub-types: F,V,I:
sub-type F cell surrounded only by Fluid and Interface adjacent cells,
sub-type V cell surrounded only by Void and Interface adjacent cells, and sub-type I are
all other Interface cells (namely has both Fluid and Void cells among neighbouring cells).

2. Solving the following equation for φ(x⃗, t + ∆t) at every cells (also Fluid and Void) with
unknown all the ∆Πi and preserve the total mass conservation:

ρ(x⃗, t+∆t)φ(x⃗, t+∆t) = ρ(x⃗, t)φ(x⃗, t) + ∆m(x⃗, t) +

Q∑
i

∆Πi(x⃗, x⃗+ c⃗i, t);

∆Πi(x⃗, x⃗+ c⃗i, t) = −∆Πi(x⃗+ c⃗i, x⃗, t);∑
i,x⃗

||∆Πi|| → 0 at condition 0 ≤ φ(x⃗, t+∆t) ≤ 1.

(7)

Here ρ(x⃗, t + ∆t) is a new density value after LBM streaming step. ∆Πi(x⃗, x⃗ + c⃗i, t) are
additional mass fluxes between all adjacent cells, and they has to be such that the new
value φ(x⃗, t+∆t) will be between 0 and 1 in all cells. It it also necessary to keep all ∆Πi

rather small in any reasonable norm || · ||.
Equations (7) with necessary conditions requires implicit solver. Actually there is no guar-
antee that the solution is exist or any implicit special solver will converge fast. KiSSAM
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uses the following iteration procedure to find all ∆Πi. The procedure is called "Mass
redistribution" and consists of exchange of ∆m between all neighbouring cells:

• preliminary iteration j + 1 changes ∆m:

∆m
(
x⃗, tj+1

)
=


∆m

(
x⃗, tj

)
− δ+(x⃗), if ∆m{extra}(x⃗) > δ+(x⃗);

∆m
(
x⃗, tj

)
− δ−(x⃗), if ∆m{extra}(x⃗) < δ−(x⃗);

∆m
(
x⃗, tj

)
, otherwise ;

∆m
(
x⃗+ c⃗i, t

j+1
)
=


∆m

(
x⃗+ c⃗i, t

j
)
+ δ+(x⃗)/Nv(x⃗), if ∆m{extra}(x⃗) > δ+(x⃗);

∆m
(
x⃗+ c⃗i, t

j
)
+ δ−(x⃗)/Nf (x⃗), if ∆m{extra}(x⃗) < δ−(x⃗);

∆m
(
x⃗+ c⃗i, t

j
)
, otherwise

δ+(x⃗) =

{
+10−7ρ0 if Nv(x⃗) > 0 and x⃗ is Interface cell;
0 if Nv(x⃗) = 0 or x⃗ is not Interface cell;

δ−(x⃗) =

{
−10−7ρ0 if Nf (x⃗) > 0 and x⃗ is Interface cell;
0 if Nf (x⃗) = 0 or x⃗ is not Interface cell;

Nv(x⃗) =

Q∑
i

{
1 if (x⃗+ c⃗i) is Void cell
0 if (x⃗+ c⃗i) is not Void cell

Nf (x⃗) =

Q∑
i

{
1 if (x⃗+ c⃗i) is Fluid cell
0 if (x⃗+ c⃗i) is not Fluid cell

∆m{extra}(x⃗) =

(
φ{test} − 1

)
ρ(x⃗, t+∆t) = ∆m(x⃗, t) + ρ(x⃗, t)φ(x⃗, t)− ρ(x⃗, t+∆t),

if φ{test} − 1 > 10−7;

φ{test}ρ(x⃗, t+∆t) = ∆m(x⃗, t) + ρ(x⃗, t)φ(x⃗, t),

if φ{test} < −10−7;

0, otherwise;

φ{test} =
ρ(x⃗, t)φ(x⃗, t) + ∆m(x⃗, t)

ρ(x⃗, t+∆t)
(8)

First of all, if the Interface cell current value φ{test} =
ρ(x⃗, t)φ(x⃗, t) + ∆m(x⃗, t)

ρ(x⃗, t+∆t)
> 1 + 10−7

we put very small amount of ∆m (about δ = 10−7ρ0) evenly in all neighboring Void
cells (of course if they are exist). Similarly if φ{test} < − 10−7 then the very small
amount of ∆m = 10−7ρ0 is taken away from all neighboring Fluid cells.
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• At uneven iteration k + 1 the ∆m is changed according with following equations:

∆m
(
x⃗, tk+1

)
=


∆m

(
x⃗, tk

)
−∆m{extra}(x⃗, tk), if x⃗ is Interface cell

and φ{test}(x⃗, tk)− 1 > 10−7

and NI(x⃗) > 0;

∆m
(
x⃗, tk

)
, otherwise ;

∆m
(
x⃗+Rc⃗i, t

k+1
)
=



∆m
(
x⃗+Rc⃗i, t

k
)
+

∆m{extra}(x⃗, tk)

NI(x⃗, R)
, if x⃗ is Interface cell

and φ{test}(x⃗, tk)− 1 > 10−7

and NI(x⃗) > 0;

and c⃗i ̸= (0, 0, 0);

∆m
(
x⃗+Rc⃗i, t

k
)
, otherwise;

NI(x⃗, r) =

Q∑
i

{
1 if (x⃗+ rc⃗i) is Interface cell and φ(x⃗+ rc⃗i) < 1, c⃗i ̸= (0, 0, 0);

0 if (x⃗+ rc⃗i) otherwise;

R = min
1≤r≤3

r|NI(x⃗,r)>0;

∆m{extra}(x⃗, tk) =
(
φ{test}(x⃗, tk)− 1

)
ρ(x⃗, t+∆t) =

∆m(x⃗, tk) + ρ(x⃗, t)φ(x⃗, tk)− ρ(x⃗, t+∆t);

φ{test}(x⃗, tk) =
ρ(x⃗, t)φ(x⃗, tk) + ∆m(x⃗, tk)

ρ(x⃗, t+∆t)
.

(9)

At uneven iteration number the Flawed cells (i.e. Interface cells with φ{test} > 1 + 10−7)
equally redistribute their ∆m{extra} between neighbouring Interface cells. If no ap-
propriate neighbouring cell are found the neighbourhood distance is increased up to
maximum radius Rmax = 3;

9



• At even iteration k + 2 the ∆m is changed according with following equations:

∆m
(
x⃗, tk+2

)
=


∆m

(
x⃗, tk+1

)
+∆m{lack} (x⃗, tk+1

)
, if x⃗ is Interface cell

and φ{test}(x⃗, tk+1) < −10−7

and NI(x⃗) > 0;

∆m
(
x⃗, tk+1

)
, otherwise ;

∆m
(
x⃗+Rc⃗i, t

k+2
)
=



∆m (x⃗+Rc⃗i, tk + 1)−
∆m{lack} (x⃗, tk+1

)
NI(x⃗, R)

, if x⃗ is Interface cell

and φ{test} (x⃗, tk+1
)
< −10−7

and NI(x⃗) > 0;

and c⃗i ̸= (0, 0, 0);

∆m
(
x⃗+Rc⃗i, t

k+1
)
, otherwise;

NI(x⃗, r) =

Q∑
i

{
1 if (x⃗+ rc⃗i) is Interface cell and φ(x⃗+ rc⃗i) > 0, c⃗i ̸= (0, 0, 0);

0 if (x⃗+ rc⃗i) otherwise;

R = min
1≤r≤3

r|NI(x⃗,r)>0;

∆m{lack} (x⃗, tk+1
)
=

− φ{test} (x⃗, tk+1
)
ρ(x⃗, t+∆t) = −∆m(x⃗, tk+1)− ρ(x⃗, t)φ(x⃗, tk+1);

φ{test}(x⃗, tk+1) =
ρ(x⃗, t)φ(x⃗, tk+1) + ∆m(x⃗, tk+1)

ρ(x⃗, t+∆t)
.

(10)

Similarly at even iterations the Flawed cell (Interface cells with φ{test} < −10−7)
collect their ∆m from neighbouring cells up to the neighbourhood distance Rmax = 3.

• Repeat uneven and even iterations up to maximum 20 iterations or until the total
number of Flawed cells > 0.

3. Changing φ in all cells (Interface,Fluid and Void):

φ(x⃗, t+∆t) =


0 , if φ{test}(x⃗, t+∆t) ≤ 10−7;

1 , if φ{test}(x⃗, t+∆t)− 1 ≥ −10−7;

φ{test}(x⃗, t+∆t) , otherwise .

φ{test}(x⃗, t+∆t) =


1 +

∆m(x⃗, tklast_iteration)

ρ(x⃗, t+∆t)
, if x⃗ is Fluid cell ;

0 , if x⃗ is Void cell ;
φ(x⃗, t)ρ(x⃗, t) + ∆m(x⃗, tklast_iteration)

ρ(x⃗, t+∆t)
, otherwise.

(11)

Change cells types:
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Cell type φ(x⃗, t+∆t) Cell enthalpy E New Cell type
Interface =1 Fluid
Interface =0 Void
Fluid ̸= 1 Interface
Void ̸= 0 Interface
Solid E > E(Tliquidus) Fluid

Fluid or Interface

E < E(Tsolidus) and
there are adjacent Solid cells

or E < E(Tuncsolidus)
Solid

(Remelted sub-type)

Table 1: Cell types change conditions

After that all ∆m in all cells is set to zero, except the cells of Void type with ∆m ̸= 0,
because it is not possible to evaluate correct φ(x⃗, t+∆t) there due to unknown ρ(x⃗, t+∆t)
values. The updated value of ρ(x⃗, t + ∆t) (as like as all DFs fi) in such cells will be
extrapolated from the neighbouring cells only after memory allocation and initialization,
and the new φ(x⃗, t+ 2∆t) will be calculated further at the next step.

4. Fixing cell types. The algorithm finds the "bad" Fluid cells with adjacent Void cells and
changes their types from Fluid to Interface. Besides that additionally at the same time
this algorithm also carried out the special sub-types Interface F,V and I required by anti-
diffusion algorithm (see above).

3.2.2 LBM boundary conditions

The usual streaming step fi(x⃗ + c⃗i∆t, t + ∆t) = fi(x⃗, t + ∆t) is not correct if the coordinate
(x⃗+ c⃗i) falls into the Void cell type. The pressure boundary conditions are applied in this case:

fir (x⃗, t+∆t) = (feqi (ρext, u⃗(x⃗, t)) + fir (ρext, u⃗(x⃗, t)))− fi(x⃗, t),

ρext = ρ0 +
Pl + Pev

c2s
.

(12)

where feqi is evaluated from eq. (2), ρ0 is quasi-equilibrium density of fluid, additional pressure
caused by Laplace pressure Pl and evaporation recoil pressure Pev(see sec. 3.2.6).

The Laplace pressure can be estimated with the Young–Laplace equation:

Pa = σκ, (13)

where σ is the surface tension and κ is the mean curvature of surface.
The bounce-back boundary condition [14, 11] is applied near solid boundaries:

fir (x⃗, t+∆t) = fi(x⃗, t) if (x⃗+ c⃗+ i) falls into Solid cell type. (14)

For the distribution functions hi from eq. (3) used for heat transfer in liquid the following
boundary conditions at the free surface is applied:

hir (x⃗, t+∆t) = hi(x⃗, t) +
E

ρext
(fir (x⃗, t+∆t)− fi(x⃗, t)) (15)

if (x⃗+ c⃗i) falls into the Void cell type. The value of fir (x⃗, t+∆t) is obtained from eq. (12) and
E =

∑
i

hi(x⃗, t) is the energy in the considered cell x⃗. If the cell x⃗ is Solid than the boundary

condition for h⃗i degenerates into the simple bounce-back.
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3.2.3 Curvature, wetting and surface normal calculation

Curvature is evaluated only at Interface cells by help of the "template sphere" approach [5]. The
direction of surface normal is also calculated in some Solid cells, which has Void cells among
adjacent cells.

Let the interface be given by the sphere with radius R, i.e. the interface curvature is given
by κ = 2/R . The template sphere has the radius r and center Mr. Considering a general case,
the interface does not pass through the center Mr. The distance is labeled δ, so the portion of
non-fluid void in the template sphere is labeled V (see fig. 2). The curvature should be expressed
as a function of r, δ, and V .

r

n

δ
l1

l2

v1

v2R

Figure 2: Geometric scheme for curvature calculation.

After some math manipulations (see appendix), the radius R can be obtained:

R =
3(r2 − δ2)2

4(2r3 − 3r2δ + δ3)− 12V /π
− δ (16)

and κ = 2/R. The volume V cannot be evaluated accurately because of the discrete nature of
grid so it is calculated according with following formula:

V =
∑

−L⩽px⩽+L
−L⩽py⩽+L
−L⩽pz⩽+L

w (|px|, |py|, |pz|) kwet(x⃗c + p⃗)φ(x⃗c + p⃗),

kwet(x⃗) =

1−
θeq

180◦
if cell x⃗ is type Solid but not Remelted sub-type;

1 otherwise;

(17)
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where L is the stencil half size, KiSSAM uses L = 4 (in fig. 2 L = 2), w are the weights
dependent on the distance from point (x⃗c+ p⃗) to the center of template sphere x⃗c. These weights
are constants pre-calculated as the volume of sphere-cube intersection (with sphere of radius r
and center at (0, 0, 0) and cube is the cell p⃗± ( 12 ,

1
2 ,

1
2 )).

The template sphere radius r is 3

√
3

4π
389 ≈ 4.5285, where the number 389 is the total number

of weights w with value > 0.5 for L = 4.
The wetting coefficient kwet simulates the effect of the tendency to the equilibrium angle θeq

when the liquid surface get close to the solid surface. Note that KiSSAM uses three types
of equilibrium angle θeq: for solid substrate wetting, solid powder particles wetting and solid
remelted material (e.g. wetting of solidified meltpool, this value is usually θeq = 0◦ to get
smooth solidification).

Volume φ of fluid inside the cell is known at the each time step, and the distance δ between
the fluid interface and the center of the considered interface cell is calculated from the following
approximate formula of the position of the interface:

δ =
1− 2φ

2max {ni}
, (18)

where ni is the component of the normal vector to the interface at this point, which is calculated
at the each time step (see below). The expression (18) can be obtained from the exact equations
(e.g., see [13]). Another approximation is proposed in [7]. Thus, with formulas (16) and (18)
the approximation of the curvature is obtained for every Interface cell. The analysis of the error
produced by this approach is given in the Appendix. The approximation appears to be quite
accurate, giving the mean curvature with the relative error less then 2%.

The unit normal vector n⃗(x⃗c) in the cell x⃗c is calculated based on the φ of the neighbor cells:

n⃗′(x⃗c) =
∑

x⃗∈Cnorm

(1− φ(x⃗)) (x⃗− x⃗c);

Cnorm = x⃗|x⃗=x⃗c+(i,j,k)T ,i,j,k∈{0,±1} ;

n⃗(x⃗c) =
n⃗′(x⃗c)

|n⃗′(x⃗c)|
.

3.2.4 Marangoni force

High temperature gradients along the liquid metal surface lead to Marangoni convection. This
tangential Marangoni force acts along the surface tension gradient, and the following equation
should be satisfied for force F⃗ :

F⃗ · τ⃗ = ∇σ(x⃗, T ) · τ⃗∆S,

where τ⃗ is the unit tangential vector, σ(x⃗, T ) is the temperature-dependent surface tension, and
∆S is the unit surface area equals to 1 in LBM units. We note here that the recoil pressure
and the Laplace pressure are included in the pressure drop at the fluid/gas interface boundary
condition, while the Marangoni effect acts as a shear force.

The force F⃗ for equation (1) is computed as

F⃗ (x⃗) = ∇σ(x⃗, T )− (∇σ(x⃗, T ) · n⃗) n⃗, (19)

where n⃗ is the unit normal vector (how it is calculated see in section 3.2.3), and the surface
tension gradient ∇σ is calculated with finite-difference scheme.
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3.2.5 Drag force in mushy zone

KiSSAM additionally takes into account Darcy’s damping force due to the flow of liquid metal
through the mushy zone represented as a porous medium of permeability K [3]:

F⃗ = −µKu⃗ρ, (20)

where µ is the fluid viscosity, u⃗ is the fluid velocity and K can be obtained through the Carman–
Kozeny equation derived from the Darcy model by assuming that the mushy zone can be regarded
as a porous medium [2]:

K =
180

D2

(
1

fl
− 1

)2
1

fl
, (21)

where fl is the liquid fraction in mushy zone, assuming it linearly dependent from temperature:

fl = min

(
1,max

(
10−5,

T − Tsolidus

Tliquidus − Tsolidus

))
. (22)

The parameter D has the meaning of the characteristics length approximately equal to the
primary dendrite arm spacing (PDAS).

3.2.6 Evaporation solver

Evaporation solver follows the Knight and Klassen evaporation model [9, 8] to estimate the
energy and mass carried away by the vapor and to evaluate the recoil pressure force. In this
model, the additional pressure Pv, energy loss Jv and mass loss Mv are introduced at the surface
of the fluid with temperature Tsurf :

Pv = max

(
Psat(Tsurf )

2

(
1 +

1− ψ

2

(
1 +

ρKn

ρsurf

TKn

Tsurf

))
− Patm, 0

)
,

Mv = −ψj+ ·∆t∆x2,
Jv =Mv (Lvap(Tsurf ) + E(Tsurf )/ρ) ,

j+ = Psat(Tsurf )

√
ma

2πkBTsurf
,

ψ =
√
2πγM

ρKn

ρsurf

√
TKn

Tsurf
,

(23)
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where ψ is the evaporation coefficient,
ρKn

ρsurf
and

TKn

Tsurf
is the vapor density and temperature

jump across the Knudsen layer:√
TKn

Tsurf
=

√√√√1 + π

(
1

2

(γ − 1)

(γ + 1)
MKn

)2

−
√
π

2

(γ − 1)

(γ + 1)
MKn,

ρKn

ρsurf
=

√
Tsurf

TKn

(
1

2
(2M2

Kn + 1) exp
(
M2

Kn

)
erfc(MKn)−

MKn√
π

)
+

1

2

Tsurf

TKn

(
1−

√
πMKn exp

(
M2

Kn

)
erfc (MKn)

)
,

MKn =M

√
γ

2
,

(24)

with M is Mach number for evaporated material near the surface and γ is the vapor adiabatic
index (usually metals vapors are monoatomic with γ = 5/3), ma is the vapor atomic mass, kB is
the Boltzmann constant, ∆t and ∆x are space and time steps (equals to 1 in LBM units), E(T )/ρ
is enthalpy density at temperature T (see eq. (4)), Lvap(T ) is the latent heat of vaporization,
Psat(T ) is the saturated vapor pressure at temperature T , Patm is the pressure of ambient
atmosphere.

The saturated vapor pressure can be can be found with different models in KiSSAM:
Clausius-Clapeyron, Antonie and Antonie Extended.

For Clausius-Clapeyron model [16, 8]:

Psat(T ) [bars] = exp

−ma

Lvap0

kB

 1

T

√√√√1−

(
T

Tcrit

)2

−
1

Tboil

√√√√1−

(
Tboil

Tcrit

)2

+

1

Tcrit

(
arcsin

(
T

Tcrit

)
− arcsin

(
Tboil

Tcrit

)))}
;

Lvap(T ) = Lvap0

√√√√1−

(
T

Tcrit

)2

,

Lvap0(T ) = LvapB
/

√√√√1−

(
Tboil

Tcrit

)2

,

(25)

where Lvap0 is the specific heat of vaporization at absolute zero temperature (it can be carried
out from LvapB

– the heat of vaporization at boiling point which is known more often), Tboil is
the boiling temperature at standard atmosphere (1 bar) and Tcrit is the critical temperature.

For Antonie model:

Psat(T ) [Pascal] = 10A−B/(C+T ),

Lvap(T ) =
B ln 10

(C + T )2
·
kBT

2

ma
;

(26)
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and for Antonie Extended:

Psat(T ) [Pascal] = 10A−B/(C+T )+DT+ET 2+F log10(T ),

Lvap(T ) =
kBT

2

ma
·

(
B

(C + T )2
+D + 2E +

F
T ln 10

)
ln 10.

(27)

The coefficients A,B,C usually can be found from any reference book with saturated vapor
data (for example see https://en.wikipedia.org/wiki/Vapor_pressures_of_the_
elements_%28data_page%29). Additional coefficients D,E ,F can be used for more precise
fitting of saturated vapor curves.

The recommended model in KiSSAM is Antonie model.
For eq. (23) it is still not clear how to found Mach number M . We use three regimes for

evaluation the M : diffusive evaporation when M = 0, moderate evaporation (when 0 < M < 1)
and intensive sonic evaporation with M = 1:

M =


0, if Tsurf ⩽ Tlim0

or Psat < Patm;

1, if Tsurf ⩾ Tlim1
;

Tsurf − Tlim0

Tlim1
− Tlim0

, otherwise.
(28)

The crucial points Tlim0 and Tlim1 are calculated once as the temperature when saturated
vapor pressure equals to ambient pressure, and the temperature when the evaporation becomes
sonic. In other words Tlim0

is the root of the equation Psat(Tlim0
) = Patm and Tlim1

is the root
of the equation

Psat(Tlim1
) = Patm · Prel (T = Tlim1

,M = 1) , (29)

where Prel(T,M) is the pressures relation, which can be calculated from the Rankine-Hugoniot
shock relations [9] (see appendix).

Additionally in KiSSAM for stability purpose limit Pv,Mv and Jv are limited with high
absolute values.

3.2.7 Radiation cooling

Radiation cooling of liquid surface with temperature T is expressed as additional energy losses
equal to −σSBT

4, where σSB is the Stefan-Boltzmann constant.

3.2.8 Convective cooling

One more reason for cooling is the energy loses due to forced convection, when the ambient gas is
forced to flow over a meltpool or liquid droplets by external means such as a pump in camera. If
the local curvature radius of the surface (either meltpool or liquid droplet) is R, then the cooling
flux equals to

Ecc = −Nu
k

2R
(T − Tref ) , (30)

where Nu is the Nusselt number, k is the gas thermal conductivity, Tref = 300 K is the reference
temperature T is the local temperature of the surface.

To estimate Nusselt number KiSSAM uses Whitaker model for flow over the sphere [15]:

Nu = 2 +
(
0.4Re1/2 + 0.06Re2/3

)
Pr0.4 (µ∞/µs)

1/4
, (31)
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where Reynolds number Re =
2RρgasVgas

µ∞
, Pr is the gas Prandtl number, µ∞ is the gas viscosity

at ambient temperature, ρgas is the gas density, Vgas is the camera gas absolute flow velocity, µs

is the value of the gas viscosity at the surface temperature.
The value of µs can be carried out from the Sutherland’s law:

µs = µref

(
T

Tref

)3/2

·
Tref + Tµ

T + Tµ
, (32)

where µref is the gas reference viscosity (= µ∞) and Tµ is an effective temperature (the Suther-
land constant).

3.2.9 Bubbles tracking solver

By default the vacuum is assumed in any Void cells and regions where the gas pressure is 0.
But it is possible to enable the algorithm of bubbles tracking (flag config.calcBubbles in
input.json file). This algorithm of Connected-component labeling [4] at every iteration finds all
enclosed regions of connected cells with filling fraction of φ < 1 (Void,Interfaces and some Solid
cells).

TODO

3.2.10 Gas solver

Now the gas and vapour are not tracked in camera and their flow is not simulated.

3.2.11 Heat solver

In Tractile Mesh only Solid or Void regions exist and heat equation is solved in Solid region:

∂E(T )

∂t
= ∇ · (k(T )∇E(T )) , (33)

where k(T ) is temperature-dependent thermal diffusivity, E(T ) is the enthalpy. At the Solid-
Void boundary and on the boundaries of simulation domain adiabatic boundary conditions are
set.

The cells in Tractile Mesh with coordinates (x1, y, z) and (x2, y, z) are possibly merged if
maximum temperature difference between cells (x1, ya, za) and (x2, ya, za) for any ya, za is less
than 10 K. Also the cell is split if the temperature difference between neighbouring cells is less
than 10 K. The same criteria works for all coordinates.

3.2.12 Ray tracing

Laser Beam
For ∼ 1µm wavelength lasers typically used in L-PBF, the laser energy is absorbed in a thin
skin layer of the metal (< 100 nm). Therefore KiSSAM implements the laser energy deposition
as a heat flux boundary condition for every ray being reflected from the liquid or solid material
surface in the corresponding cell. To model multiple reflections, the surface normal at each cell
at the material interface is used (see sec. 3.2.3). For every ray we track its propagation with an
unlimited number of reflections until the energy of the ray reaches a given small threshold value.
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The absorption coefficient (the part of ray power absorbed after the single reflection) is depend
on the local temperature of the cell.

The laser ray polarization and defocusing is neglected now.

Electron Beam
The electron beam energy deposition behaves differently from the laser beam. For the electron
beam, the similar ray tracing method is used, although the rays are not reflected from the surface
and can penetrate into the solid or liquid metal. We trace each ray as it is scattered inside the
material, reducing its kinetic energy along the path. This energy is deposited as a volume heat
source at the corresponding cells for LBM temperature model.

The Monte-Carlo model simulates electrons trajectories by considering both elastic and in-
elastic scattering processes. In the energy range of 30–120 keV for the materials of interest (with
relatively large atomic number), we can separately consider the nearly elastic scattering of the
electrons by atomic nuclei and its energy loss (attenuation) via the scattering by the electrons
in the atomic shells.

The nearly elastic scattering is governed by the nuclear scattering cross-section. For a nucleus
with the charge number Z, in the approximation of the screened Rutherford scattering, the single
differential scattering cross-section has the form [12]:

dσ(θ)

dΣ
=
Z(Z + 1)e4

p2v2
1

(1 + cos θ + 2β)
2, (34)

where v,p,θ are the electron velocity, momentum, and scattering angle respectively, e is the
elementary charge, and β is the screening parameter:

β =

(
ℏZ1/3

paB

)2

, (35)

where aB is the Bohr radius and ℏ is the reduced Planck’s constant.
The scattering length Λ is determined by the total scattering cross-section and the material

density ρ:

Λ =
2β(1 + β)p2v2A

2πNAρZ(Z + 1)e4
, (36)

where A is the atomic weight, and NA is the Avogadro number.
The differential energy loss (stopping power) due to the electron-electron scattering is com-

puted as in [6]:
dE

ds
= −785

ρZ

AE
ln

(
1.166E

J

)
[eV/Å], (37)

where E is the instantaneous electron energy in eV, s is the path traveled in the material in Å,
ρ is the density given in g/cm3, and J = 10Z eV is the mean ionization potential of the atom.

In the Monte-Carlo model, the electron trajectory in the material is approximated by a
series of straight line segments with a randomly chosen length Lr, which is chosen based on the
scattering length (36):

Lr = −Λ logR1, (38)

where R1 is a random number uniformly distributed in the interval between 0 and 1.
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The polar angle of collision θ is determined by solving the equation:

R2 =

θ∫
0

dσ(θ′)

dθ′
sin θ′dθ′

π∫
0

dσ(θ′)

dθ′
sin θ′dθ′

, (39)

where R2 is a random number uniformly distributed in the interval between 0 and 1. The
azimuthal angle of collision is chosen randomly in the interval between 0 and 2π.

The energy loss is modeled by reducing the electron energy at each line segment between two
collisions i and i+ 1 in the following manner:

Ei+1 = Ei + Lr

dE

ds
, (40)

where Lr is determined from eq. (38). The deposited energy Lr

dE

ds
is divided among the lattice

cells corresponding to the given line segment.

3.3 Sensors
Radiation sensors (photo-detectors) can be specified to collect emission from the melted and solid
area. The collection scheme of one sensor is shown in the fig. 3.
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melt pool

Origin coordinates
(x,y,z)Aperture
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Resulo�on
angle

separate traced rays

Direc�on

Figure 3: The sensor (photo-detector) design KiSSAM

Each sensor is a point with coordinates (x,y,z) (origin), Direction vector, Aperture view
angle, Resolution angle between individual rays traced from the origin point inside the cone and
Wavelength band response. Each separate ray inside the sensor’s cone is traced until the collision
point with the meltpool or solid surface and the emission power of this point is calculated from
temperature (in accordance with Plank’s law) and collected by the sensor. So the sensors signal
is calculated at every time step with the following formula:

Emission energy [J] =
∑
i

∆tε
π|r⃗i|2β2

4

λ2∫
λ1

2hc2

λ5
(
e

hc
λkBTi − 1

)dλ, (41)

where ∆t is time step, r⃗i = p⃗i − s⃗i is a ray vector pointed from the sensor’s origin point s⃗i to
the ray’s intersection point with the surface p⃗i, Ti is the surface temperature of the point p⃗i, β is
the sensor’s resolution angle, h, c, kB are Plank’s constant, light speed and Boltzmann constant,
and [λ1, λ2] is the wavelength band of the sensor’s response. Emissivity constant ε is assumed
as 1 now. The sum

∑
i

is accumulated over the full set of the rays back-traced from the sensor

as shown in the fig. 3.
See the User Guide below (section ??) to study how to specify individual sensors parameters.
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4 Supplementary instructions (to User guide and tutorial)

4.1 Recommended parameters sets
4.1.1 Space and time steps

LBM generally has no strictly defined stability criteria. Standard BGK LBM usually stable if
Reynolds number Re < 1000 and Mach number Ma ≲ 0.3. Here the Mach number not the

phisical value but the following value: Ma =
u

cs
=

u
√
3∆t

∆x
. LBM also has the second order

accuracy over the Mach number, so it must be as low as possible. So finally we have two
restrictions when space and time steps (∆x and ∆t) have to be chosen:

1000 > Re =
uL

ν

convert to
dimensionless
LBM units

≈ csMa · 10∆x
(τ − 1/2)c2s

=
Ma · 10∆t

√
3

τ − 1/2
≲

10

τ − 1/2
< 1000

Ma =
u∆t

∆x
≪ 1

(42)

First condition requires the relaxation parameter τ should be more than 0.51, i.e. 3ν̂+0.5 =
3ν∆t

∆x2
+0.5 > 0.51, where ν̂ is kinematic viscosity in numerical LBM units and ν is the kinematic

viscosity in physical units (SI). So finally we got the following simple condition:

∆t ≳ 0.003
∆x2

ν
. (43)

From the second conditionMa≪ 1 from eq (42) and assuming that typical velocities in melt-pool
are about 1 m/s we got one more condition:

∆t≪
∆x

1m/s
. (44)

And the third arrangement also must be satisfied — the CFL condition for heat solver:

∆t <
1

2

∆x2

κ
, (45)

where κ is the thermal diffusivity of material in solid and low-temperature liquid phases.
Combining this the time step ∆t should be chosen after the space step ∆x as

∆t = min

(
0.003∆x2

ν
,

∆x2

2κmax

)
(46)

where κmax is the maximum value of thermal diffusivity for temperature ranges T < 1.1Tl (Tl is
a liquidus temperature).

The recommended space/time steps parameters set for the most common materials are fol-
lowing:
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∆x = 2 µm ∆t = 15 ns
∆x = 3 µm ∆t = 30 ns
∆x = 4 µm ∆t = 50 ns
∆x = 5 µm ∆t = 80 ns
∆x = 6 µm ∆t = 120 ns
∆x = 7 µm ∆t = 160 ns

Figure 4: Recommended space and time steps for most common metals and alloys. Nevertheless
don’t forget to check the condition (46)

For laser beam melting recommended space step is ∆r = 3 µm (dr=3e-6) and time step is
∆t = 30 ns (dt=30e-9).
For electron beam melting recommended space step is ∆r = 5 µm (dr=5e-6) and time step is
∆t = 80 ns (dt=80e-9).
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Appendices
A Curvature calculation

A.1 Curvature radius formula
The volume V is given by intersection of the template sphere and the fluid domain as described
in Figure 2.

V = V1 + V2,

where
V1 =

1

3
πx2(3R− x);

V2 =
1

3
π(r − δ − x)2(3r − (r − δ − x))

are volumes of the spherical caps which compose the V .
By the similarity of the triangles

l1
l2

=
l2

2R− l1
,

where l1, l2 are as labeled in figure 2. Also by the Pythagoras theorem we have

r2 = l22 + (δ + l1)
2

and excluding l2 we find

l1 =
r2 − δ2

2(R+ δ)
.

Transforming the expression for the volume we get

V =
π

3

[
3l21R− l31 + (r2 + δ2 + l21 − 2rδ − 2rl1 + 2δl1)(2r + δ + l1)

]
=

=
π

3

[
2r3 − 3r2δ + δ3 + 3(δ2 − r2)l1 + 3(δ +R)l21

]
.
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After inserting l1 in this equation for V we obtain

3V

π
= 2r3 − 3r2δ + δ3 − 3(r2 − δ2)2

4(R+ δ)
.

Simplifying the above we can derive the radius R as follows,

R =
3(r2 − δ2)2

4(2r3 − 3r2δ + δ3)− 12V /π
− δ (47)

and κ = 2/R.

A.2 Curvature approximation formula error
To understand how rude approximation the formula (16) is, one could remind that it is divided
under the assumption that the surface is close to the sphere. In the common case, the surface
has two main curvatures Rx and Ry and κ = 1

Rx
+ 1

Ry
. The formula is obtained for Rx = Ry.

Due to the symmetry of the formula, it will produce correct result κ = 0 when Rx = −Ry. So
we believe that the error of the formula 16 will be the biggest when one of the Ri = 0, which
corresponds to the case when the surface is a cylinder.

Let us consider again the figure 2. Now the volume of intersection can be calculated the
following way

V = 2

r0∫
0

S(x)dx,

where
r(x) =

√
r20 − x2,

while δ = 0 is considered for simplicity.

S(x) = r2(x) arccos(
r(x)

2R
) +R2 arccos(1− r2(x)

2R2
)− r(x)

2

√
4R2 − r2(x)

as the area of two circles intersection.
Performing Taylor expansion up to o(r3) for S(x) we get

r2(x) arccos(
r(x)

2R
) = r2(x)(π/2− r(x)

2R
) + o(r3).

Using the formula arccos(1− x) =
√
2x+ (2x)3/2

24 + o(x2) we get

R2 arccos(1− r2(x)

2R2
) = r(x)R+

r3(x)

24R
+ o(r3)

and for the last member

r(x)

2

√
4R2 − r2(x) = r(x)R− r3(x)

8R
+ o(r3).

So

S(x) = r2(x)(π/2− r(x)

2R
) +

r3(x)

6R
+ o(r3) = π/2r2(x)− r3(x)

3R
+ o(r3).
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Using expression for r(x) and the equality

r(x) = r0 −
x2

2r0
+ o(x3)

we derive

S(x) = π/2(r20 − x2)−
(r20 − x2)(r0 − x2

2r0
)

3R
+ o(x3).

Simplifying this we obtain

S(x) = π/2(r20 − x2)− 1

3R
(r30 − 3/2x2r0 +

x4

2r0
) + o(x3).

So

V = 2

r0∫
0

[
π/2(r20 − x2)− 1

3R
(r30 − 3/2x2r0 +

x4

2r0
) + o(x3)

]
dx =

= 2

[
πr30/3−

1

3R
(r40 − 1/2r40 +

r40
10

) + o(r40)

]
= 2πr30/3− 2/5r40/R+ o(r40).

While using the formula 16 we will get

R′ =
3r4

8r3 −
12

π
(2πr3/3− 2/5r4/R+ o(r4))

=
R

8

5π
+ o(1)

and κ′ = 2/R′ =

16

5π
+ o(1)

R
. Comparing this result with the correct κ = 1/R for the cylinder we

get the relative error

ε =
κ′ − κ

κ
=

16

5π
− 1 + o(1) ≈ 1.86%

So we approximate the curvature having the error less than 2% in the worst case. Note
that no mesh effects are taken into the account and they might corrupt the result much more,
especially when the grid is quite coarse.

B Pressure ratio at evaporation
The pressure ratio Prel between the vapour pressure directly above the surface of the evaporated
metal Psurf and the pressure of the ambient atmosphere Patm is necessary for the eq. (29). This
ratio can be calculated with help of the Rankine-Hugoniot shock relations [9]:

Prel(Tsurf ,M) =
Psurf

Patm
=
ρsurf

ρKn
·
Tsurf

TKn
·

(
1 + γambM

cKn

camb

(
Mcorr +

√
1 +M2

corr

))
,

Mcorr =
γamb + 1

4
M

cKn

camb
,

cKn

camb
=

√√√√√mamb
a γvapTsurf

TKn

Tsurf
mvap

a γambTamb
,

(48)
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where
ρKn

ρsurf
and

TKn

Tsurf
are Mach-dependent density and temperature jumps across the Knus-

den layer and can be found from eq. (24). Ambient gas has temperature Tamb, adiabatic index
γamb and atomic mass mamb

a , whilst metal vapor has adiabatic index γvap and atomic mass mvap
a ,

M is the Mach number.
If ambient gas has non-zero velocity Vamb directed to the normal to the evaporated surface

(this is necessary for special gas solver), than:

Prel(Tsurf ,M) =


ρsurf

ρKn
·
Tsurf

TKn
·

(
1−

γamb − 1

2
Mrel

) 2γamb

1− γamb
, if Mrel ⩽ 0;

ρsurf

ρKn
·
Tsurf

TKn
·
(
1 + γambMrel

(
Mcorr1 +

√
1 +M2

corr1

))
, otherwise ;

Mcorr1 =
γamb + 1

4
Mrel;

Mrel =M
cKn

camb
−Mamb;

Mamb = Vamb

√
mamb

a

γambkBTamb
.

(49)

When Mrel ⩽ 0 this is isentropic rarefaction wave conditions.
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